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A complete geometrical characterization is given of the set of all possible effec- 
tive conductivity tensors for two-dimensional composites made of an arbitrary 
number of given anisotropic phases. It is rigorously established that any 
polycrystalline composite formed from an arbitrary (possibly infinite) number of 
phases can be replaced by a composite formed from only two of the given 
phases without altering the effective conductivity tensor. 
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1. I N T R O D U C T I O N  

This paper is concerned with the determinat ion of bounds  on the effective 
conductivi ty of a multiphase polycrystalline material with arbitrary phase 
geometry. Historically, at tention was first restricted to composites with 
isotropic phases: Hashin (1/ gives a review of this early work. The sub- 
sequent developments for polycrystalline media (2t focused on overall 
bounds  on the individual eigenvalues of the effective conductivi ty tensor 
and no at tempt was made to correlate these eigenvalues. 

In a two-dimensional  setting, a characterization of the set of all 
anisotropic conduct ing materials resulting from the mixture in arbitrary 
volume fraction of two anisotropic conduct ing phases was first proposed by 
Lurie and Cherkaev. (3) A more  complete characterization was obtained by 
Francfort  and Mura t  (4/based on the ideas of H-convergence and compen-  
sated compactness  developed by Mura t  and Tartar.  (5 10) 

1 Laboratoire Central des Ponts et Chauss~es, 75732 Paris Cedex 15, France. 
2 California Institute of Technology, Pasadena, California 91125. 

161 

0022-4715/87/0100-0161505.00/0 �9 1987 Plenum Publishing Corporation 



162 Franc for t  and M i l t o n  

Here we obtain a complete characterization of the set of all possible 
effective conductivity tensors for two-dimensional composites made of an 
arbitrary number of given anisotropic phases. The eigenvalues of the con- 
ductivity tensors of the phases are assumed to be bounded above and 
below. Our main result, as anticipated by Lurie and Cherkaev, (31 is that 
any polycrystalline composite formed from an arbitrary (possibly infinite) 
number of phases can be replaced by a composite formed from only two of 
the given phases without altering the effective conductivity tensor, 

Lamination is a straightforward process of generating composites from 
one or two anisotropic phases. Specifically, each material is sliced 
orthogonal to one of its principal conductivity axes. It is then layered with 
the same material sliced in the orthogonal direction or with the other 
material sliced in either direction. 

Let (cq, e2) and (/3~,/32) be the respective eigenvalue pairs of the con- 
ductivity tensors of phase 1 and phase 2 and assume, with no loss of 
generality, that 

el-G<c~ 2 , /31 ~</32, c~l ~2 -..< fll/3z (l.1) 

A straightforward calculation (41 establishes that the eigenvalues 2~ and 22 
of the effective conductivity tensors obtained through the aforementioned 
lamination processes lie on one of the following curves: 

2122 = 0~j ~X2, with ~1 ~<)q, 22~<~2 (1.2) 

2122=/31/32, with /31<..)ol,22<,./32 (1.3) 

21 (or 22) = [(/31 -- ~1) A122-1- (/32-- ~2) ~1/31]/(/31/32-- ~l:X2) 

with O~ 1 IX2 < .'~o i 22 ~ /31/32 (1.4) 

21 ( o r  -~2) = [(/32 - -  ~2)  ,~1 )~2 q- (/31 - -  (z1) ~ - -  ~ (~2) 

with c~1 c% ,.< 2 ~ 2z -..</3 j/32 (1.5) 

or on one of the curves obtained by interchanging the subscripts i and 2 
on c~ in (1.4) and (1.5). 

It is rigorously proved by Francfort and Murat (4) that an arbitrary 
conductivity tensor with eigenvalues 21 and 22 can be obtained as an effec- 
tive tensor for the mixture of the two original phases if and only if the 
eigenvalue pair (21,22) lies inside the outermost region of the (21, 22) plane 
bounded by the curves (1.2)-(1.5). Three cases have to be distinguished: 

Case 1: cq~</3~andc~2~<132 

Case 2: :~ l< /31and%>f i2  

Case 3: cq>/31 andc~ 2</32 
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Note that, in view of (1.1), these three cases cover all possibilities. 
Although cases 2 and 3 could be grouped together, we choose to treat 
them separately because they represent disjoint possibilities. In case 1 the 
outermost boundary is the union of the curves (t.2)-(1.4), whereas in 
cases 2 and 3 the outermost boundary is the union of the curves (1.2), 
(1.3), and (1.5). Thus, if we define 5(' in case 1 [-i.e., when 
(0{1--31)(0{2--32)>0] as the region between the branches of the hyper- 
bolas 

(/~, - 0{1) 2122 + (32 - 0{2) 0{131 

1 3 2 -  0{,0{2 

2122(3132--0{10{2) 

(/~1 0{,) 2 , &  + ( 3 ~ -  0{2) 0{131 

0{10{2 <~ 2122 <~ 3,32 (1.6) 

or in cases 2 and 3 [i.e., when (0{1 - 31 )(0{2 - 32) < O] as the region between 
the branches of the hyperbolas 

(32 -- 0{2) 2122 -}- (31 -- 0{,) 0{232 • ~1, 22 > 
3132--0{,0{2 

& 22(3 ,  32 - 0{, 0{2) 

(32 - 0{2) 2 ,22 + (31 - 0{1) 0{232 

0{10{2 ~- 2122 "~ 3132 (1.7) 

as illustrated in Fig. 1, then the set of all possible effective conductivity ten- 
sors coincides with the set of all tensors whose eigenvalue pair (21, 22) lies 
in 5 a. 

Here this result is generalized to two-dimensional composites contain- 
ing arbitrarily many given anisotropic phases. The set of all possible eigen- 
value pairs (21,22) of the effective tensor is found to have a simple 
geometrical characterization, which is illustrated in Fig. 2 for a three-phase 
composite. First the eigenvalue pairs corresponding to the given phases are 
plotted in the (2122, 22) plane, together with the associated eigenvalue 
pairs obtained by interchanging 2, and 2 2 (Fig. 2a). Then the convex hull 
is taken (Fig. 2b) and mapped to the (2122, 21) plane (Fig. 2c) and the 
convex hull of the resulting region is formed (Fig. 2d). The set thus 
obtained when mapped back to the (21,22) plane represents the set of all 
possible eigenvalue pairs of two-dimensional composites formed from the 
given phases. 

In the first section of the paper basic facts concerning the theory of 
homogenization are recalled and the problem is formulated in the 
mathematical framework of H-convergence. In the second section the 
results obtained by Francfort and Murat (4~ for two-phase materials are 
reviewed. We then proceed to prove the results announced above for mul- 
tiphase materials with arbitrarily many phases (cf. Remark 3.6 and 
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Fig. 1. Typical examples of the region 5 ~ in the (21, 22) plane for each of the three cases 
defined in the introduction. The region 50 represents the set of all possible eigenvalue pairs 
(21, 22) of effective tensors of composites formed from mixing two phases with conductivity 
tensor eigenvalue pairs (~l, c~2) and (#l, #2). The curves bounding 50 are the outermost curves 
obtained from (1.2)-(1.5). 

Theorem 3.2). The geometrical characterization of the set of all possible 
effective tensors is also derived (cf. Corollary 3.1). 

The crux of the proof is to assume the existence of an effective tensor 
A ~ that cannot be associated with a composite of any two of the original 
phases and to infer the existence of two fictitious materials that generate 
composites whose possible effective conductivity tensors include those of 
the original phases but exclude A ~ This is absurd, since any composite of 
the original phases can be regarded as a composite of these two fictitious 
materials. The idea of introducing fictitious materials to obtain bounds is 
due to Schulgasser (2) and is embodied in the trajectory method of 
Bergman.(11) 

Throughout the text a few remarks, such as Remarks 3.5 and 3.7, are 
inserted for the sake of completeness, but are not necessary for an 
understanding of the rest of the paper. As far as notation is concerned, 
capital Roman letters denote symmetric second-order tensors or tensor 
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Fig. 2. Geometrical construction of the set of all possible eigenvalue pairs (21, 22) of the 
effective tensor of a three-phase composite. The eigenvalue pairs associated with the conduc- 
tivity tensors of the given phases are plotted in the (2122, 22) plane (Fig. 2a). The convex hull 
is taken (Fig. 2b) and mapped to the (2122, 21) plane (Fig. 2c), and its convex hull is formed 
(Fig. 2d) to complete the construction. All eigenvalue pairs within the resulting region, and 
only these eigenvalue pairs, correspond to the eigenvalues of the effective tensor of a com- 
posite formed from the three phases. 

fields on N2, capital Greek letters denote sets of such tensors or tensor 
fields, and capital script letters denote subsets of the upper right open 
quadrant, N~- x E~. 

2. A M A T H E M A T I C A L  F O R M U L A T I O N  O F  T H E  P R O B L E M  

Let us consider a family of homogeneous and anisotropic conducting 
materials in our two-dimensional space E2. They are oriented in a manner 
such that the principal axes of their respective conductivity tensors coin- 
cide. We denote by (el, e2) their common principal orthonormal basis. An 
arbitrary element of the family is characterized by the two eigenvalues, 21 
and 22, of its associated conductivity tensor, which are strictly positive real 
numbers. Thus the oriented family under consideration can be represented 
by a subset 5 P of the upper right open quadrant, E* x N*,  of the plane: 
each material is represented by a pair of points, one point whose coor- 



166 Francfort and Milton 

dinates are the eigenvalues 21 and 22 of the conductivity tensor of the 
material and an associated point whose coordinates are obtained by 
interchanging )h and 22. This pairing of points accounts for the symmetry 
in Fig. 1 about the line 21 = 22. 

An equivalent definition of the oriented family is the set 

Z -  { B = 2 1 e l | 1 7 4  (,~q,)o2)~5 ~} (2.1) 

An arbitrary composite made of materials of the original family has a con- 
ductivity tensor field A of form 

A(x) = 'R(x) B(x) R(x) (2.2) 

where for almost every x of ~2, B(x) lies in Z and R(x), with transpose 
'R(x), is an orthogonal matrix, which indicates the orientation of the 
crystal at the point x. 

In order to investigate the macroscopic properties of all such com- 
posites we consider a family of measurable conductivity tensor fields W(x) 
with values in 2" and a family of measurable orientation functions R~(x). 
The corresponding family of conductivity tensor fields, 

M(x) = 'R~(x) B"(x) R"(x) (2.3) 

has spatial variations on a length scale of e. The introduction of the orien- 
tation functions R~(x) allows an arbitrary orientation of the local conduc- 
tivity tensor at each point of the composite. 

A possibly inhomogeneous conducting material characterized by 
A ~  A~ is an effective material for the mixture (and A ~ is the associated 
effective tensor field) if there exists a subsequence of A ~ such that, on any 
domain/2  of R2, the solution to an arbitrary conduction problem with A ~ 
as the conductivity tensor field yields a potential field, a current flux, and a 
local power dissipation that remain close on average, when e is sufficiently 
small, to the potential field, the current flux, and the local power dis- 
sipation associated with the solution of the same conduction problem with 
A ~ as the conductivity tensor field. 

The mmhematical translation of these notions is the notion of H- 
convergence. 

De f in i t i on  2.1. If c~ and r are two strictly positive real numbers, 
then M2(c~, fl) is the set of all symmetric second-order tensor fields A(x) 
with coefficients in L~([R 2) such that 

cd ~< A(x) < fll (2.4) 

for almost every x ~ R 2. 
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D e f i n i t i o n  2.2. A sequence A ~ of elements of M2(~, fl) is said to 
H-converge to a symmetric second-order tensor field A ~ if and only if, on 
each bounded domain .(2 of g 2, all pairs of sequences of vector fields w ~ and 
q~ in (L2(f2)) 2 for which (i) the identity 

q~ = A~w ~ (2.5)  

is satisfied for all e; (ii) w ~ and q~ converge weakly in (L2(~Q)) 2 as 8 tends to 
zero; and (iii) the scalar fields 

curl w ~ = 8w~/Ox2 - 8 w ~ / 8 X l ,  div q~ -= 8q]/Sxl + Oq~/Ox 2 (2.6) 

lie in a compact  set of H~o2(~?), have weak limits w ~ and qO satisfying 

q0 = AOw o (2.7) 

Romork 2.7. Physically, the requirement that curl w ~ and div q~ lie 
in compact  set of H~o2(f2) places a constraint on the deviation of the fields 
w'; from gradients of potentials and of divq~ from fixed source terms. 
(Sources of current that extend throughout s are allowed in this general 
treatment of the problem.) 

This definition is motivated by the following theorem (see Murat  (5) or 
Spagnolo (12) in a similar context. 

T h e o r e m  2.1. Let A ~ be a family of elements of M2(cq 13). There 
exists a subsequence of A ~ that H-converges to an element A ~ of M2(c~, fl). 

Under the hypothesis that 5 f is a compact subset of the open 
quadrant, (~*)2,  the particular family of A% considered in (2.3) satisfies 
(2.4) with 

c~= inf [min(21, 22)], f l =  sup [max(21, 22) ] (2.8) 
(21,22) ~ c f  ()q,';~2) E cp 

Our objective is to characterize the set of all A~ that can be obtained as 
H-limits of sequences of A% of the form (2.3). Theorem 2.1 ensures the 
existence of such A~ 

In summary, after possible extraction of subsequences, we are left with 
the following set of conditions to be satisfied by the sequences of A%: 

(i) 

where: 

(ii) 

Each A ~ has the form 

= R ( Z i e l @ e l + 2 ~ e 2 Q e z ) R  ~ (2.9) 

(2~, 2~) is a measurable sequence of J - v a l u e d  pairs satisfying 

�9 ~ ~< ,~ (2.10) 
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and J is a compact subset of (R*)2 which is symmetric under interchange 
of the coordinates 

(iii) R ~ is a measurable sequence of orthogonal matrices on R2 

(iv) A ~ H-converges 

We label these as the ( H - J )  set of conditions. 

Remark 2.2. Since J is invariant under interchange of the coor- 
dinates [i.e., (~2, 21)(~J if and only if (21 , ) . 2 )~J ] ,  the inequality (2.10) 
can be satisfied with no loss of generality at the expense of a possible 
increase of the rotation angle associated with R ' by 7r/2. 

We now seek necessary and sufficient conditions for an effective tensor 
field A ~ to be the H-limit of a sequence A ~ satisfying (H-J ) .  

3. OPTIMAL BOUNDS FOR TWO-DIMENSIONAL 
COMPOSITES 

The mapping 

f(.~l, ,~2) ~- (zl ~2, ,~2) ~ (d, ,;~) (3.1) 

maps the compact set J of ([~*)2 onto a compact set F ( J )  of (~*)2. Since 
J is invariant under interchange of the eigenvalues 21 and )~2, F ( J )  is 
invariant under the "reflection transformation" T defined for any element 
(d,)4) of (~*)2 by 

T(d, 2) - (d, d/h) (3.2) 

The set F ( J )  will loosely be referred to as the "(d, 2) representation of X", 
where X, the set of oriented conductivity tensors of the components, is 
defined via (2.1). 

The characterization of all possible H-limits of sequences A ~ satisfying 
( H - J )  is conveniently addressed in the (d, 2) plane. 

3.1. Two-Phase Composites 

Consider two oriented materials with conductivity tensors 

A = ~ l e ~ | 1 7 4  
(3.3) 

B=31el| +32ez| 

and assume that (1.1) is satisfied. The associated set J =  J ( S )  reduces to 

J ( A ,  B)=  {(c~ 1, cq), (c~2, ~1), (ill, flz), (/3z, ill)} (3.4) 
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and its image by F is simply the set 

F(5~(A,  B ) ) =  {a = (c~lc( 2, c~2), T ( a ) =  (~10~2, oq), 

b =  (#1#2,  #2), T ( b ) =  (/3,# 2, # , ) }  
(3.5) 

In the three cases considered in the introduction, the region F ( ~ )  is 
invariant under the "reflection transformation" T and is bounded by the 
vertical line segments [a, T(a)] and [b, T(b)] as illustrated in Fig. 3. 

In case 1 (Fig. 3a), F(Se) is also bounded below by the line segment 
[ T(a), T(b)] and bounded above by a concave branch of hyperbola joining 
a and b, that is, the image under T of the line segment [T(a), T(b)]. In 
cases 2 and 3 (Figs. 3b and 3c), F(5(') is bounded above by the line 
segment [a, b] and is bounded below by a convex branch of hyperbola 
joining T(a) and T(b), which is the image under T of the line segment 
[a, b]. Note that the slope and 2 intercept of the line passing through a 
and b have the same sign in case 1, but have opposite signs in cases 2 and 
3. Similarly this is true for the line passing through T(a) and T(b). 

(b) 

Fig. 3. 

~32 
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The region 5 ~ in the (2~, 22) plane maps to a region F(SO) with a simple geometrical 
structure in the (d, 2) - F(2j, 22) plane. This structure is evident from the examples given here 
of each of the three cases. In the graphs any point on the curve 2 = ~ is associated with an 
isotropic material. In each case note the signs of the slope and 2 intercept of the line passing 
through a and b and of the line passing through T(a) and T(b). 
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The following theorem, which provides a complete characterization for 
the effective tensor fields of all possible composites made of two given 
anisotropic phases, is the main result of Francfort and Murat. (4/ 

T h e o r e m  3.1. Let A and B be the conductivity tensors defined via 
(3.3). In each of the cases 1, 2, or 3 the set A of all measurable self-adjoint 
second-order tensor fields A ~ with eigenvalues 21(x),22(x) such that 
(21, 22) lies in 5~ almost everywhere is exactly the set of all H-limits of 
sequences A s satisfying 

A ~= 'R~AR~z~ + 'R~BR~(1 - Z ~) (3.6) 

where Z ~ is a measurable sequence of characteristic functions on ~2 and R ~ 
is a measurable sequence of orthogonal matrices on R2. 

Remark 3.1. The set A is equivalently defined as the set of all sym- 
metric second-order tensor fields A ~ with eigenvalues (2~, 22) such that 
(2122, 22) [and (2122, 21) ] lie in F ( 5  a) almost everywhere. 

Beroork 3.2. The H-converging sequences A': that satisfy the 
conditions of Theorem 3.1 are precisely the sequences A ~ that satisfy 
( / / -5 p (A, B)). 

Romark 3.3. From now on the sets A, 2 ~, and F ( S )  associated with 
A and B are denoted by A(A, B), ~r B), and F (S (A ,  B)), respectively. 

In view of Remarks 3.1-3.3, the region F(Y(A, B)) is exactly the 
"(d, 2) representation" of the possible H-limits of sequences A t satisfying 
(H-•(A, B)). 

We now investigate composites constructed from arbitrarily many 
anisotropic materials. 

3.2. M u l t i p h a s e  Composi tes  

An arbitrary compact set Y of (~*)2 symmetric under interchange of 
the coordinates is considered. The associated set of conductivity tensors 
defined via (2.1) is denoted by ~'. We denote by A(Z') the set of all effective 
conductivity tensor fields A ~ that can be achieved as H-limits of a sequence 
A ~ satisfying (H-SP). 

The results of the previous subsection yield the following three 
remarks, which are obvious from a physical standpoint because for any 
A, B ~ Z" the set of all composites formed from the phases associated with Z" 
includes any composite constructed from the phases associated with A and 
B or constructed from any phases that themselves are composites of these 
two materials. 
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Remark 3.4. If A and B are two arbitrary elements of X, then 
A(A, B) is included in A(X). Thus we have 

[,_) A(A, B) c A(2). (3.7) 
(A ,B)  ~ Z ,2 

A slightly stronger conclusion that pertains to materials that are 
macroscopically inhomogeneous holds true, namely: 

Remarks 3.5. Let c45,f denote the set 

X~j~- ~) 5~(A, B) (3.8) 
( A , B ) ~ X  2 

and let A ~ be a measurable conductivity tensor field such that its eigen- 
value pair (At(x), 22(x)) lies in K~,, for almost all x z ~2 Then A ~ belongs 
to A(2). 

A similar result is stated by Tartar (Ref. 9, Section V), for a mixture in 
fixed volume fraction of two isotropic conducting materials. As explained 
there, the local character of H-convergence (Ref. 13, Remark 17) permits 
the analysis to be restricted to a bounded domain f2. On g2, A ~ is 
approximated in the strong topology of LI(f2) by a sequence of functions 
A"(x) whose eigenvalue pairs are constant on disjoint open subdomains of 
1-2 and lie in y3/, .  Since H-convergence results from a metrizable topology 
and because that topology is weaker than the topology associated with 
strong convergence in L~(r the analysis can be further restricted to con- 
ductivity tensor fields with constant eigenvalues lying in Jg~j. These eigen- 
values belong to one of the sets 2*~ B). By virtue of Theorem 3.1, the 
corresponding effective conductivity tensor field lies in A(A, B), and, in 
view of Remark 3.4, in A(Z'). 

Remark 3.6. Defining 

~/ ,  - F(X~j,) = L) F ( • ( A ,  B ) )  (3.9)  
(A,B)  ~ Z 2 

and 

A~/, - {A~ I A~ is a measurable symmetric rensor field 

with (2~ 2~ 2~ ~ - ~  for almost all x ~ [~ 2 } (3.10) 

3 The approximation of A ~ by a sequence of functions whose eigenvalues are constant on dis- 
joint open subdomains of Q is immediate. By projection they can be shown to take their 
values in the closure of S~/, and by approximation in ,X(;,~ itself. 
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we conclude, with the help of Remark 3.5, that 

A~cA(Z) (3.11) 

Our ultimate goal is the proof of the inverse inclusion in (3.11). 
Strictly speaking, we are only in a position to prove the following theorem, 
which applies to macroscopically homogeneous media. This theorem and 
its corollary form the central result of the paper. 

T h e o r e m  3.2. Let A ~ be a measurable symmetric second-order ten- 
sor field on ~2 with constant eigenvalues. If A ~ belongs to A(X), then A ~ 
belongs to A j .  

A geometric characterization, as illustrated in Figs. 2 and 4, of the set 

~"' ~ F ( ~ )  

/ 
/ /  

/ / /  

t 
1111 

d 

Fig. 4. Construction of the region .~,~,, for an arbitrarily chosen set of infinitely many 
materials represented here in the '~ 2) representation" by the shaded region F(SP). The con- 
struction is simple: the convex hull co(F(5~)) of F ( J )  is "reflected" about the curve 2 = . ~  
via the transformation T to obtain T(co(F(5~))) and the union with co(F(5~)) gives ,~p, 
which is the region bounded by the outermost closed curve in the figure. This set is the "(d, ).) 
representation" of the set of all possible effective tensors of two-dimensional composites for- 
med from the given phases. See also Fig. 2, which depicts the construction of ~ r  for three- 
phase composites. 
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of all such effective tensors A ~ is also derived in the proof of Theorem 3.2. 
Specifically, we obtain the following result: 

Corollary 3.1. Let A ~ be as in Theorem 3.2 and let 2 o and 2 o 
denote its eigenvalues. Then A ~ belongs to A(Z') if and only if (2o2 ~ 2 ~ 
and (2o2 ~ 2 ~ lie in co(F(5~))w T(co(F(SP))), where F(5 P) is the "(d, 2) 
representation of _r," co(F(SP)) denotes the closed convex hull of F(5~), 
and T is the "reflection transformation" defined by (3.2). 

Remark 3.7. In fact it is true that 

Remork 3.9. 
~ ,  is closed and 

A(Z') = Ay (3.12) 

but a complete proof requires an extension of the result of Theorem 3.2 to 
any measurable symmetric second-order tensor field A ~ lying in A(s The 
extension may be accomplished with the help of the following result, com- 
municated by R. V. Kohn (cf. Kohn and Dal Maso(14)). 

A subset of S of L l (~  m, ~P), where m and p are arbitrary integers, is 
such that all its elements lie almost everywhere in a closed subset S' of ~P if 
and only if it is translation invariant, closed in LI(~  ~, ~P), and decom- 
posable. 

For A(Z') these properties are easily verified, at least locally, and we 
may conclude to the existence of a closed subset Z" of all symmetric 
matrices such that 

A(27) = L~(~2, ~ '' ) (3.13) 

Theorem 3.2 then shows that ~ '  is included in A~ and, by the definition of 
A~f, that L~(~ 2, ~') is also included in A~. This was the result we sought. 

Remark 3.8. The case of periodic homogenization (see, for example, 
Bensoussan et aLl~5)), which yields homogeneous H-limits, is covered by 
Theorem 3.2. 

Remark 3.6, Theorem 3.2, and Corollary 3.1 imply that 

~,~ = co(F(SP)) u T(co(F(Sr))) (3.14) 

Remark 3.10. A result of the type obtained in Theorem 3.2 and even 
of the type (3.12) is claimed without proof in Ref. 3, Section 4. 

Proof  of  T h e o r e m  3.2 and Coro l la ry  3.1. The proof is 
established in two steps, of which the second is the most substantial. 

First let us prove 

co(F(~)) ~ T(co(F(~))) = ~ (3.15) 
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To this end consider an arbitrary point p of co(F(Se)). It lies in the convex 
hull of a finite number N of points as, a2 ..... aN of F(Sg). (It suffices, of 
course, to take N =  3). Possible addition of the images of those points by 
the "reflection transformation" T enables us to assume that p lies in the 
convex hull of N pairs of points ai and T(ai) of F(SP). That hull is the 
union over all pairs a~ and aj of the convex trapezoids with vertices 
(at, at, T(ai), T(aj)). Now, the properties of the region F ( S )  described in 
Section 3.1 imply that the convex trapezoid with vertices (a, b, T(a), T(b)) 
is included in F ( f ( A ,  B)) for any conductivity tensors A and B, represen- 
ted by points a and T(a), and b and T(b) in the "(d, 2) representation." 
Hence, each of the trapezoids with vertices (a~, at, T(ai), T(aj)) is included 
in Y~/,. Since ~/~ is invariant under the"reflection transformation" T, T(p) 
also belongs to ~ j .  The proof of (3.15) is complete. 

Let A ~ be a conductivity tensor field of the form described in the 
statement of Theorem 2.2 and let pO denote its "(d, 2) representation." If 2 ~ 
,~o denote the eigenvalues of A ~ we may with no loss of generality assume 

2~ (3.16) 

and that p0 corresponds to the point with 2-coordinate 2 ~ 
In the second step of the proof we suppose that both pO and T(p ~ do 

not lie in co (F(~) )  and then reach a contradiction. 
Since 5 e is compact, co(F(SP)) is compact, and since po and T(p ~ do 

not belong to co(F(SQ)), we deduce the existence of two nonvertical lines l 
and l' that respectively separate pO and T(p ~ from co(F(~)) ,  with p0 above 
l and T(p ~ below l'. [When pO lies above co(F(5~)) these lines are 
necessarily nonvertical, with p0 above l and T(p ~ below l'. Otherwise there 
is a vertical line separating pO from co(F(,9~ which may be slightly 
rotated in either direction, without intersecting the compact set co(F(SP)), 
to obtain l and l' with pO above l and T(p ~ below l ' . ]  Let us define 

d -  - min 2 1 2 2 ,  d + ~ max 2122 ( 3 . 1 7 )  
(,).122) E cp (,~1).2) ~ .9' 

and let us denote the points of intersection of l with the vertical lines 
d =  d and d = d  § by a t and b t, respectively (see Fig. 5a). These points, 
like l, lie above co(F(5~)). 

Now consider the set F(•(At,  Bt)), where Aj and B t are the conduc- 
tivity tensors of two fictitious materials whose "(d, 2) representations" are 
a t and T(at), and br and T(bt). The set F(5 e) lies below the line segment 
[at, bt] and hence r ( f (~))= F(Se) lies above T([a~, bt] ). But the region 
bounded by the line segments [at, bt], [a/, T(al)l, and [bt, T(bt)] and by 
the arc of hyperbola T([at, bt]) is included in F(Y(At,  Bt)). Thus, F(5 ~ 
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,& 
), 1 

T(t )  

' t )  

--V"d- 

(ct) d- d + d (b) d- d + d 

Fig. 5. Sketches showing the various lines l, ~ 10, and I h and the various points pO, a/, b~, hr 
li~, and their images under the "reflection mapping" 7". These are introduced in the proof of 
Theorem 3.2 and Corollary 3.1. The shaded regions represent co(F(Y))  for an arbitrary 
set 5 a. 

lies inside F(5((At, Bt)) and, since H-convergence derives from a metrizable 
topology, A(X) is included in A(Az, Bz). In more physical terms, each 
individual phase of the original set can be regarded as a composite 
resulting from mixing the materials with conductivity tensors Az and Bz. 
Thus, any composite formed from phases in the original set may also be 
viewed as a composite resulting from mixing the materials with conduc- 
tivity tensors AI and B t. We thereby conclude that 

pO e F(L-~(AI, B,)) (3.18) 

In cases 2 and 3, discussed in Section 3.1 and illustrated in Fig. 3, 
F(5~ Bt) ) is bounded above by the line segment [a~, bl] and hence by 
l; p0 cannot belong to F(5~(At, Bt) ) and we have reached a contradiction 
with (3.18). In the remaining possibility, case 1, l always has nonnegati~c 
slope and nonnegative 2 intercept. Hence the slope of l lies between the 
slope of the horizontal line lh through p0 and the slope of the line lo joining 
pO to the origin. Let c6~ denote the closed double cone of vertex pO bounded 

822/46/1-2-12 
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by the lines l0 and l h. By translating l parallel to itself, we obtain a line/, 
sketched in Fig. 5b, that satisfies 

pO �9  [c~ c o ( F ( J ) )  = ~ ,  [ ~  ~ (3.19) 

Note that T(lh) and T(lo) are lines and not hyperbolas as they would 
be for the image under the reflection transformation T of an arbitrary line. 
Hence, the image T(~) of cg under T is also a closed double cone of vertex 
T(p ~ bounded by the line T(lh) joining T(p ~ to the origin and by the 
horizontal line T(lo). 

Let us denote by ~; and b t the intersections of [ with the vertical lines 
d =  d -  and d =  d +, respectively. The set F(5 ~) lies strictly below the line 
segment [~;, b;] and hence it also lies strictly above the curve T( [~ ,  h;]). 
Since/lies inside ~, T([~;, b;]) is easily checked to be a concave branch of 
hyperbola lying inside T(cg) and passing through T(p ~ as shown in 
Fig. 5b. 

We now take l' and translate it parallel to itself to obtain a line # that 
passes through T(p ~ and does not intersect co(F(Se)). If r lies outside the 
cone T(Cg), the concavity of T([~;, 1~;]) implies that F(5 p) lies strictly above 
either the line through T(~;) and T(p ~ or the line through T(6;) and T(p ~ 
(see Fig. 6). That line below F(5 ~) is denoted by l*. In either case, l* lies 
within the cone T(~) and lies below F(5~), and hence does not intersect 

/ /  / fT([) T T((-b[) X:Vd [o 

/ ~' 

(o) a- d § T(b0 
[h = / , ' ~ ' ( p O )  

. / / / " ~ b l ) ( c )  d- ci + d ~ 
/ f T ( p O )  th 

/~T(fi l) 
P 

(b) cl- ci + d 
Fig. 6. The construction of the line l* depends on where the line [' is located in relation to 
the cone T(cg) bounded by the lines T(lo) and T(lh). The three examples depicted here typify 
all possibilities. 
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co(F(SP)). If/~ lies inside T(~), we identify l* with/~. All possibilities result 
in a line l* satisfying 

T(p ~ ~ l*, l* c~ c o ( F ( Y ) )  = ~25, l* c T(c6) (3.20) 

Since F(5 ~) is compact, we can translate l* by a small amount  parallel 
to itself but without intersecting co(F(SP)), to obtain a line [* with non- 
negative slope and nonnegative )~ intercept that separates T(p ~ from F(5~ 

But an argument similar to the one used to prove l has nonnegative 
slope and nonnegative 2intercept would show that any line such as [* 
separating T(p ~ from F(SP) cannot have both nonnegative slope and non- 
negative 2 intercept, in contradiction with the above result. 

Thus, pO or T(p ~ belongs to co(F(5")), which proves the "only if" part 
of Corollary 3.1. Recalling (3.15) then completes the proof of Theorem 3.2 
and the "if" part of Corollary 3.1. | 
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